307 resultados para molecular modification

em Indian Institute of Science - Bangalore - Índia


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The formation of the helical morphology in monolayers and bilayers of chiral amphiphilic assemblies is believed to be driven at least partly by the interactions at the chiral centers of the amphiphiles. However, a detailed microscopic understanding of these interactions and their relation with the helix formation is still not clear. In this article a study of the molecular origin of the chirality-driven helix formation is presented by calculating, for the first time, the effective pair potential between a pair of chiral molecules. This effective potential depends on the relative sizes of the groups attached to the two chiral centers, on the orientation of the amphiphile molecules, and also on the distance between them. We find that for the mirror-image isomers (in the racemic modification) the minimum energy conformation is a nearly parallel alignment of the molecules. On the other hand, the same for a pair of molecules of one kind of enantiomer favors a tilt angle between them, thus leading to the formation of a helical morphology of the aggregate. The tilt angle is determined by the size of the groups attached to the chiral centers of the pair of molecules considered and in many cases predicted it to be close to 45 degrees. The present study, therefore, provides a molecular origin of the intrinsic bending force, suggested by Helfrich (J. Chem. Phys. 1986, 85, 1085-1087), to be responsible for the formation of helical structure. This effective potential may explain many of the existing experimental results, such as the size and the concentration dependence of the formation of helical morphology. It is further found that the elastic forces can significantly modify the pitch predicted by the chiral interactions alone and that the modified real pitch is close to the experimentally observed value. The present study is expected to provide a starting point for future microscopic studies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An understanding of the effect of specific solute-solvent interactions on the diffusion of a solute probe is a long standing problem of physical chemistry. In this paper a microscopic treatment of this effect is presented. The theory takes into account the modification of the solvent structure around the solute due to this specific interaction between them. It is found that for strong, attractive interaction, there is an enhanced coupling between the solute and the solvent dynamic modes (in particular, the density mode), which leads to a significant increase in the friction on the solute. The diffusion coefficient of the solute is found to depend strongly and nonlinearly on the magnitude of the attractive interaction. An interesting observation is that specific solute-solvent interaction can induce a crossover from a sliplike to a sticklike diffusion. In the limit of strong attractive interaction, we recover a dynamic version of the solvent-berg picture. On the other hand, for repulsive interaction, the diffusion coefficient of the solute increases. These results are in qualitative agreement with recent experimental observations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Gelonin inhibits protein synthesis by inactivating the eukaryotic 60 S ribosomal subunit by an unknown mechanism. The protein was purified in high yield by a new method using Cibacron blue F3GA-Sepharose. Chemical modification studies reveal that arginine residues are essential for biological activity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The presence of two essential tryptophan residues/molecule was implicated in the binding site of Abrus agglutinin [Patanjali, Swamy, Anantharam, Khan & Surolia (1984) Biochem. J. 217, 773-781]. A detailed study of the stopped-flow kinetics of the oxidation of tryptophan residues revealed three classes of tryptophan residues in the native protein. A discrete reorganization of tryptophan residues into two phases was observed upon ligand binding. The heterogeneity of tryptophan exposure was substantiated by quenching studies with acrylamide, succinimide and Cs+. Our study revealed the microenvironment of tryptophan residues to be hydrophobic, and also the presence of acidic amino acid residues in the vicinity of surface-localized tryptophan residues.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ricinus communis agglutinin was subjected to various chemical treatments and the effect on its hemagglutinating and saccharide-binding properties was studied. Acetylation, succinylation and citraconylation led to a complete loss in the activity of the agglutinin, whereas reductive methylation had no effect on the activity, showing that charged amino groups were involved in the hemagglutinating and saccharide-binding activity of Ricinus agglutinin. Modification of tryptophyl, arginyl and carboxyl-group-containing residues did not lead to any loss in the activity of the agglutinin. Acetylation of tyrosyl groups with N-acetylimidazole strongly reduced the hemagglutinating and saccharide-binding property of Ricinus agglutinin. The loss in activity was restored on deacetylation of the tyrosyl groups. Modification of tyrosyl residues also led to a change in the immunological properties of the agglutinin. The initial rate of modification of tyrosyl and amino groups and the concomitant loss of activity was reduced in the presence of lactose.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The galactose-binding lectin from the seeds of the jequirity plant (Abrus precatorius) was subjected to various chemical modifications in order to detect the amino acid residues involved in its binding activity. Modification of lysine, tyrosine, arginine, histidine, glutamic acid and aspartic acid residues did not affect the carbohydratebinding activity of the agglutinin. However, modification of tryptophan residues carried out in native and denaturing conditions with N-bromosuccinimide and 2- hydroxy-5-nitrobenzyl bromide led to a complete loss of its carbohydrate-binding activity. Under denaturing conditions 30 tryptophan residues/molecule were modified by both reagents, whereas only 16 and 18 residues/molecule were available for modification by N-bromosuccinimide and 2-hydroxy-5-nitrobenzyl bromide respectively under native conditions. The relative loss in haemagglutinating activity after the modification of tryptophan residues indicates that two residues/molecule are required for the carbohydrate-binding activity of the agglutinin. A partial protection was observed in the presence of saturating concentrations of lactose (0.15 M). The decrease in fluorescence intensity of Abrus agglutinin on modification of tryptophan residues is linear in the absence of lactose and shows a biphasic pattern in the presence of lactose, indicating that tryptophan residues go from a similar to a different molecular environment on saccharide binding. The secondary structure of the protein remains practically unchanged upon modification of tryptophan residues, as indicated by c.d. and immunodiffusion studies, confirming that the loss in activity is due to modification only.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An N-alpha-protected model tripeptide amide containing, in the central position, an alpha,beta-dehydrophenylalanine (Z-configurational isomer), Boc-L-Pro-DELTA-Z-Phe-Gly-NH2 (Boc, tert-butyloxycarbonyl), has been synthesized by solution methods and fully characterized. IR absorption and H-1 NMR studies provided evidence for the occurrence of a significant population of a conformer containing two consecutive, intramolecularly H-bonded (type II-III') beta-bends in solution. However, an X-ray diffraction analysis clearly indicates that only the type-II beta-bend structure survives in the crystal state.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A mutant of Erythrina corallodendron lectin was generated with the aim of enhancing its affinity for N-acetylgalactosamine. A tyrosine residue close to the binding site of the lectin was mutated to a glycine in order to facilitate stronger interactions between the acetamido group of the sugar and the lectin which were prevented by the side chain of the tyrosine in the wild-type lectin. The crystal structures of this Y106G mutant lectin in complex with galactose and N-acetylgalactosamine have been determined. A structural rationale has been provided for the differences in the relative binding affinities of the wild-type and mutant lectins towards the two sugars based on the structures. A hydrogen bond between the O6 atom of the sugars and the variable loop of the carbohydrate-binding site of the lectin is lost in the mutant complexes owing to a conformational change in the loop. This loss is compensated by an additional hydrogen bond that is formed between the acetamido group of the sugar and the mutant lectin in the complex with N-acetylgalactosamine, resulting in a higher affinity of the mutant lectin for N-acetylgalactosamine compared with that for galactose, in contrast to the almost equal affinity of the wild-type lectin for the two sugars. The structure of a complex of the mutant with a citrate ion bound at the carbohydrate-binding site that was obtained while attempting to crystallize the complexes with sugars is also presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

EcoP1 modification methylase was radioactively labeled when incubated with S-adenosyl-L-[methyl-3H]methionine in the presence of ultraviolet light. Crosslinking of the enzyme as detected by electrophoresis on sodium dodecyl sulfate-polyacrylamide gel followed by fluorography and autoradiography, was shown to be specific by a number of criteria. More importantly, EcoP1 modification methylase was also radioactively labeled with S-adenosyl-L-[carboxyl-14C]methionine demonstrating that labeling involved binding of the entire AdoMet molecule rather than methylation of the protein. Further, c2 EcoP1 mutant DNA modification methylases which show negligible or very little methylation activity, correspondingly formed a weak or no adduct upon crosslinking. These results suggest that photolabeling of EcoP1 DNA modification methylase occurs at the AdoMet binding site.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The DNA-binding properties of the EcoP15I DNA methyltransferase (M . EcoP15I; MTase) were studied using electrophoretic mobility shift assays. We show by molecular size-exclusion chromatography and dimethyl suberimidate crosslinking that M . EcoP15I is a dimer in solution. While M . EcoP15I binds approx. threefold more tightly to its recognition sequence, 5'-CAGCAG-3', than to non-specific sequences in the presence of AdoMet or its analogs, the discrimination between specific and non-specific sequences significantly increases in presence of ATP. These results suggest for the first time a role for ATP in DNA recognition by type-III restriction-modification enzymes. Furthermore, we show that although c2 EcoPI mutant MTases are defective in AdoMet binding, they are still able to bind DNA in a sequence-specific manner.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study an atmospheric glow discharge with a fluorocarbon gas as precursor was used to modify the surface of polydimethyl siloxane (PDMS -(CH3)(2)SiO](n)-). The variation in protein immobilizing capability of PDMS was studied for different times of exposure. It was observed that the concentration of proteins adsorbed on the surface varied in an irregular manner with treatment time. The fluorination results in the formation of a thin film of fluorocarbon on the PDMS surface. The AFM and XPS data suggest that the film cracks due to stress and regains its uniformity thereafter. This Stranski-Krastanov growth model of the film was due to the high growth rate offered by atmospheric glow discharge. (C) 2011 Elsevier B. V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Deoxyhypusine hydroxylase (DOHH) catalyzes the final step in the post-translational synthesis of an unusual amino acid hypusine (N-(sic)-(4-amino-2-hydroxybutyl) lysine), which is present on only one cellular protein, eukaryotic initiation factor 5A (eIF5A). We present here the molecular and structural basis of the function of DOHH from the protozoan parasite, Leishmania donovani, which causes visceral leishmaniasis. The L. donovani DOHH gene is 981 bp and encodes a putative polypeptide of 326 amino acids. DOHH is a HEAT-repeat protein with eight tandem repeats of alpha-helical pairs. Four conserved histidine-glutamate sequences have been identified that may act as metal coordination sites. A similar to 42 kDa recombinant protein with a His-tag was obtained by heterologous expression of DOHH in Escherichia coli. Purified recombinant DOHH effectively catalyzed the hydroxylation of the intermediate, eIF5A-deoxyhypusine (eIF5A-Dhp), in vitro. L. donovani DOHH (LdDOHH) showed similar to 40.6% sequence identity with its human homolog. The alignment of L. donovani DOHH with the human homolog shows that there are two significant insertions in the former, corresponding to the alignment positions 159-162 (four amino acid residues) and 174-183 (ten amino acid residues) which are present in the variable loop connecting the N- and C-terminal halves of the protein, the latter being present near the substrate binding site. Deletion of the ten-amino-acid-long insertion decreased LdDOHH activity to 14% of the wild type recombinant LdDOHH. Metal chelators like ciclopirox olamine (CPX) and mimosine significantly inhibited the growth of L. donovani and DOHH activity in vitro. These inhibitors were more effective against the parasite enzyme than the human enzyme. This report, for the first time, confirms the presence of a complete hypusine pathway in a kinetoplastid unlike eubacteria and archaea. The structural differences between the L. donovani DOHH and the human homolog may be exploited for structure based design of selective inhibitors against the parasite.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The success of AAV2 mediated hepatic gene transfer in human trials for diseases such as hemophilia has been hampered by a combination of low transduction efficiency and a robust immune response directed against these vectors. We have previously shown that AAV2 is targeted for destruction in the cytoplasm by the host-cellular kinase/ubiquitination/proteasomal degradation machinery and modification of the serine(S)/threonine(T) kinase and lysine(K) targets on AAV capsid is beneficial. Thus targeted single mutations of S/T>A(S489A, S498A, T251A) and K>R (K532R) improved the efficiency of gene transfer in vivo as compared to wild type (WT)-AAV2 vectors (∼6-14 fold). In the present study, we evaluated if combined alteration of the phosphodegrons (PD), which are the phosphorylation sites recognized as degradation signals by ubiquitin ligases, improves further the gene transfer efficiency. Thus, we generated four multiple mutant vectors (PD: 1+3, S489A+K532R, PD: 1+3, S489A+K532R together with T251 residue which did not lie in any of the phosphodegrons but had shown increased transduction efficiency compared to the WT-AAV2 vector (∼6 fold) and was also conserved in 9 out of 10 AAV serotypes (AAV 1 to 10), PD: 1+3, S489A+K532R+S498A and a fourth combination of PD: 3, K532R+T251. We then evaluated them in vitro and in vivo and compared their gene transfer efficiency with either the WT-AAV2 or the best single mutant S489A-AAV2 vector. The novel multiple mutations on the AAV2 capsid did not affect the overall vector packaging efficiency. All the multiple AAV2 mutants showed superior transduction efficiency in HeLa cells in vitro when compared to either the WT (62-72% Vs 21%) or the single mutant S489A (62-72% Vs 50%) AAV2 vectors as demonstrated by FACS analysis (Fig. 1A). On hepatic gene transfer with 5x10^10 vgs per animal in C57BL/6 mice, all the multiple mutants showed increased transgene expression compared to either the WT-AAV2 (∼15-23 fold) or the S489A single mutant vector (∼2-3 fold) (Fig.1B and C). These novel multiple mutant AAV2 vectors also showed higher vector copy number in murine hepatocytes 4 weeks post transduction, as compared to the WT-AAV2 (∼5-6 Vs 1.4 vector copies/diploid genome) and further higher when compared to the single mutant S489A(∼5-6 fold Vs 3.8 fold) (Fig.1D). Further ongoing studies will demonstrate the therapeutic benefit of one or more of the multiple mutants vectors in preclinical models of hemophilia.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Restriction-modification (R-M) systems are ubiquitous and are often considered primitive immune systems in bacteria. Their diversity and prevalence across the prokaryotic kingdom are an indication of their success as a defense mechanism against invading genomes. However, their cellular defense function does not adequately explain the basis for their immaculate specificity in sequence recognition and nonuniform distribution, ranging from none to too many, in diverse species. The present review deals with new developments which provide insights into the roles of these enzymes in other aspects of cellular function. In this review, emphasis is placed on novel hypotheses and various findings that have not yet been dealt with in a critical review. Emerging studies indicate their role in various cellular processes other than host defense, virulence, and even controlling the rate of evolution of the organism. We also discuss how R-M systems could have successfully evolved and be involved in additional cellular portfolios, thereby increasing the relative fitness of their hosts in the population.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Curcumin has shown promising therapeutic utilities for many diseases, including cancer; however, its clinical application is severely limited because of its poor stability under physiological conditions. Here we find that curcumin also loses its activity instantaneously in a reducing environment. Curcumin can exist in solution as a tautomeric mixture of keto and enol forms, and the enol form was found to be responsible for the rapid degradation of the compound. To increase the stability of curcumin, several analogues were synthesized in which the diketone moiety of curcumin was replaced by isoxazole (compound 2) and pyrazole (compound 3) groups. Isoxazole and pyrazole curcumins were found to be extremely stable at physiological pH, in addition to reducing atmosphere, and they can kill cancer cells under serum-depleted condition. Using molecular modeling, we found that both compounds 2 and 3 could dock to the same site of tubulin as the parent molecule, curcumin. Interestingly, compounds 2 and 3 also show better free radical scavenging activity than curcumin. Altogether, these results strongly suggest that compounds 2 and 3 could be good replacements for curcumin in future drug development.